

Outline

- What is Defence Research & Development Canada?
- A little history of DND's Arctic research
- The scope of DRDC's activities
- Some selected projects
- What might be the next step?
- Conclusion

About DRDC

- A Civilian Agency of the Department of National Defence
- What we do for defence and security:
 - Provide strategic advice
 - Address operational issues
 - Assist with force development
 - Pursue leap-ahead capabilities
 - Identify and bring to bear the best innovators
- Led by Assistant Deputy Minister (S&T)

DRDC Key Facts

- 8 research centres located in 4 provinces
- 1,400 employees
- \$275 million operating budget

DRDC Atlantic Research Centre

Simplified Timeline

The growth of DRNL

• In 1947, DRNL in Churchill expanded from one shack to three!

PARL – Prince Albert Radar Laboratory

Driven by Sputnik and the need for Ballistic Missile Early Warning

Important People

Scope

The early days

- Glaciology especially ice shelves
- Geology
- Mapping
- Coastal exploration
- Bathymetry
- Ice cores
- Gravity
- Soils
- Geomagnetism
- Ice thickness and temperatures
- Water samples and temps
- Seismic measurements
- Tides
- Plant ecology and botany
- Meteorology
- Wildlife
- Archaeology
- Entomology

Later work

- Ionospheric propagation
- Radar
- Environmental protection
- Ice drift
- SAR coastline detection
- GPS
- Emergency Locator Beacons!
- Mobility mud, snow, ice
- Human performance
- Optics
- Auroral zone => Alouette satellites
- Rockets
- UW noise
- Under-ice propagation
- Surveillance options
- Ice shelves
- Ship noise
- Sovereignty
- Electromagnetics

DRDC Support to Others

- Jim Milne and Al Tremblay with additional staff as needed
- Environment Canada's Polar Sunrise 2000 and Out On The Ice (OOTI) projects
- Science Applications Internal Corporation's Arctic Climate Observation using Underwater Sound (ACOUS)
- University of Washington's Polar Science Center (UW-PSC) and their North Pole Environmental Observatory (NPEO)
- Long Term Observatory (LTO)
- Lamont Doherty Earth Observatory (LDEO) projects
- International GreenIce, led by the Scottish Association for Marine Science and the follow-on GreenArc projects
- The Canadian Sea Ice Mass Balance Observatory (CASIMBO),
- Scripps Institution of Oceanography's Switchyard project,
- Department of Fisheries and Ocean's Canadian Archipelago Flow-Through (CAT) project,
- Canadian and Danish United Nations Convention on the Law Of the Sea (UNCLOS) projects
- The International PAM-ARCMIP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) to ground-truth data from the CRYOVEX2 satellite.

Jim Milne, Dan Wile, Gerry White

Al Tremblay

Selected Projects

Project Spinnaker

- Joint Canada-US project to lay an underwater acoustics sensor array under the Arctic Ice
- One of DRDC's most ambitious projects to date
- Canada UUV development
- US sensor development
- Shared logistics

Canada's Contribution - Theseus UUV

- Worlds largest UUV 20,000 lbs
- Mission endurance over 500 km at 4 knot nominal speed
- Accurate navigation
- Lay 210 km of fiber optic cable
- Rest on the bottom or under the ice
- Operate at depths of 1000 m
- Capable of autonomous operation
- Fault management system
- Modular construction for shipping

Jolliffe Bay - 1996

How did it all end?

- Successfully laid 210 km of fiber optic cable
- At Knossos, Theseus navigated through triangle 200 m x 100 m.
- Fiber was captured in cradle system that was then pulled up through a hole in the ice.
- The fiber was cut and the sensors were attached (and operated for some time after)
- Vehicle returned back to Alert safely

Objective:

To use Autonomous underwater vehicles (AUVs) to collect high quality bathymetric data, in particular between the 2500 m contour line and the "foot of the slope", in ice covered waters in the Arctic

Project Execution: Inter-department MOU between DRDC, NRCan, and DFO

ISE Vehicle launch and recovery from the ice near Borden Island in 2010

- AUV must return to a drifting ice camp that is moving at up to 10 km/day!
 - For a 3 day mission, this is a total drift of up to 30 km!

We developed a custom 7-element hydrophone array that is

mounted in the nose of the AUV

- Deployed a custom-built 1300 Hz, sound source in the water
- Using specialized software on the AUV, the bearing angle from the AUV to the ice camp is calculated
- Homing at ranges greater than 50 km

Arctic AUV long-range homing

1st under-ice 300 km, Mar. 2010.

AUV homes from a range of 50 km to a moving ice camp.

>2000 m water depth at Remote Camp.

Trial included over 1000 km under-ice navigation.

What was accomplished?

- Completed >500 km of critical bathymetric measurements.
- In total, the AUV traveled over 1000 km during a continuous operating period of 10 days, at water depths of over 3300 m under the ice. It also successfully homed to a moving ice camp from a distance of 50 km
 - Note, each of these achievements is remarkable.
 - Collectively they represent a world record for under-ice operations in the arctic, and have provided critical data for Canada's UNCLOS submission.

AUV Bathymetry data

Vehicle Launch and recovery from a ship in 2011

AUV Mission – Data Results

Nunatsiaq News May 24, 2019

Northern Watch Technology Demonstration

- A remotely controlled, integrated surveillance system for Arctic choke points
- Began in 2007 and ended March 2016 (wasn't continuous)
- Overall it was a relatively successful project, but it faced a number of difficulties along the way

A choke point surveillance area

- Devon Island, Barrow Strait
- Barrow Strait is ~70 km wide, hundreds of kilometres long
- Uninhabited island
- Nearest support ~100 km away in Resolute

Gascoyne Inlet Camp and Barrow Strait

NW Supporters

UW Array System

Demonstration of Persistent Unattended Surveillance

- Surveillance of Barrow Strait from Southern Control Centre (Halifax): 10 Aug 11 Sept
 - Underwater arrays operational from 26 Aug – 11 Sept
- Emulation of unattended surveillance
- Operations at unclass level
- Demonstrated:
 - Compilation of a local-area surveillance picture
 - Dissemination of surveillance data
 - Remote monitoring and control
 - Management of satellite bandwidth
- System operated with high reliability

CAUSE Project Background and Objectives

Objective:

 Investigate and demonstrate sensor systems for wide-area underwater and underice surveillance in the Arctic (includes Arctic Basin and Canadian Archipelago)

Deliverables:

- Technology demos and advice on UW/under-ice surveillance technologies and methodologies
- **Time:** 5 years (15 Jun 2015 31 Mar 2020)
 - Definition ended Dec 2016; Implementation Charter approved Sept 2017

Approved funding:

- \$11,134.1k (FY19/20) budget
- \$25,648k Implementation Phase (FY17/18 FY19/20) budget
- Client: Canadian Joint Operations Command (CJOC)
 - Chief of Staff Operations (COS Ops) Continental Operations

Digital Acoustic Surveillance Array (DASA)

- 94 element, 1650-m long array
- Intended for LF operations

Just 1 of the array segments! Total array is more than 3 times longer!

 Array components significant improvement over NW arrays

CANMET Energy and Power

- Direct methanol fuel cell installation to run **NW** arrays
- Planned to operate for a year
- Shut-down occurred after 3.5 months
 - Bear damage, Iridium issues, fuel seals, VPN issue, controller issue
- Bears damaged the solar panel wiring
- Iridium data rates
 - 128 kB/sec advertised
 - 5-6 kB/sec peak attained, typical rate 0.2 kB/sec => single satellite and channel!
- To date, SSC has not provided VPN access
- Fuel bottles lose vacuum seal
- **Proprietary SCADA-pack controller** difficulties

Observatory & Field Site Study

- ONC provided a survey of four field sites suitable for Observatory installation
- A major Resolute-to-Gascoyne Inlet observatory has been proposed
- Small test observatory at Gascoyne Inlet using split-pipe
 - Failed in late winter of first year (2017)
 - Bear damage
 - UW unit and cable OK!
 - Operation restored in 2018
 - Will be refurbished for 2 year continued operations

Communications

Satellite / Terrestrial

- Iridium
 - Very poor results
 - Problems with our licensing, which did not provide proper data accounts
 - Poor polar coverage

Underwater

- CMRE Study
 - Provided some useful results, but not easily used by AUVs and smaller nodes
 - Chose to employ higher frequencies that don't propagate best in the environment

DRDC-CARLETON

- Developing narrow-bandwidth (5 Hz) long-range scheme with multiple modulation methods and adaptive probabilistic decoder
- Very low data rate
- Initial testing at CFMETR was highly successful 100%
- Need to increase range and stress the system further
- Perfectly suitable for a high-efficiency, light-weight, resonant transducer that an AUV could carry

DAMS Concept

- Sketch of DAMS drifting VLA deployment concept
- On-board detection and tracking
- Perhaps 12 DAMS units freely drifting in the Arctic gyre
- 6-18 month life between launch and recovery
- Refurbish and redeploy units annually
- Anti-tamper scuttle
- Coverage from 2—1000 km

Drifting Arctic Monitoring System (DAMS)

- DAMS proof-of-concept demonstrator is being built by in-house effort
- Current DAMS uses available parts
 - 50-m array UARPS
 - 500-m array is possible
- System Test Bed processor in the buoy
 - AIS & ADS-B receivers,
 Iridium comms, Freewave,
 WiFi, many non-acoustic sensors

Blackbird high-end embedded processor

- One of our best trials ever!
- Recently completed with NO and SWE. (Sept. 2018)
- First ever on-board demonstration of distributed detection and target tracking
- NO / CA nodes 100%
 compatible despite very
 different physical and
 electronic construction with
 different sensing capabilities

GTI LF Source Update

- Successful LF source prototype demonstrated at Seneca Lake in December 2017.
- Deliverables include family of four LF sources.
- Hardware production currently on schedule to support final project trial in late Spring 2019.
- Modelling team characterizing impact of today's changing Arctic on LF acoustic surveillance systems.
- Project outcomes: technology viability assessment, site-specific performance analysis, & strategic utilization options.

GTI Low5 UUV towed array Update

- Low drag, low power, low mass, low frequency, low-speed stability.
- 30N drag, 2.5W, 40kg, 10-200Hz, 2 kn (550 m)
- Prototype successfully tested in October 2018.
- On schedule for final project trial in late Spring 2019.
- Propagation models, Channel capacity models & Detection models being applied for performance estimates in northern environments

AUV Suction Anchor

- Designed to enable AUV to positively anchor and enter a power saving, quiet mode.
- Prototype unit has been built and tested
- Completed factory caisson testing in mud and sand over a range of pull angles
- Additional testing December 2018
- Open water testing in Q2 2019
- AUV version ready end of 2019
- Developing future applications as a platform for seafloor sampling and geotechnical analysis

AUV Fuel Cell

- First prototype used DMFC with H₂O₂ oxygen source
- Tested under pressure to 3000m
- Remained energy positive at 3000m and would exceed energy density of Liion for shallow water applications
- Challenging to adapt a COTS DMFC unit

- Second design uses a PEM stack with high pressure bottled Hydrogen and Oxygen
- AUV design in progress
- Modified COTS PEM stack, 690 bar Hydrogen, 550 bar Oxygen tanks
- Predicting 2-3 times energy design of Li-ion at 200kWhr capacity

CANAPE overview

- Canada Basin Ambient Noise and Propagation Experiment
- Shallow water experiment coincident with large-scale tomography experiment in Basin
- October 2016 September 2017
- Deep water
 - 6 tomographic arrays, 1 DVLA (Worcester, SIO)
 - ~3800 m water depth, 200-400 km separation
- Shallow water
 - 3 sources
 - 11 receivers
 - Ice/ocean moorings

135°W

CAnada BAsin Glider Experiment (CABAGE)

- Applied Physics Laboratory, Univ. of Washington
- Sarah Webster co-PI
- Improved navigation of under-ice vehicles by acoustic signal time-of-arrival navigation with on-board ADCP water mass motion estimation.

Simultaneous inversion of the collected data for the velocity profiles and glider motion has been accomplished.

On-going work is now attempting to incorporate the velocity profile and non-linear vehicle model to provide a consistent AUV position estimate.

What's next?

- CAATEX Coordinated Arctic
 Acoustic Thermometry Experiment
- Communications
 - Long-range UW acoustics
 - StarLink and other options
- Persistent AUVs
 - Solus
- AUV towed array systems
 - Solus and Low-Five
- Networked Ocean Basins
 - Baffin Bay Observing System
 - Arctic Ocean Observing System

Photo by Marco Langbroek, Leiden, the Netherlands.

Nicole Mortillaro · CBC News · Posted: May 27, 2019 6:16 PM ET | Last Updated: May 27

Conclusions

- Long history of Arctic research in a wide variety of fields
- DRDC provides significant Arctic sovereignty activities for DND
- Some high-risk projects were undertaken with surprisingly good results
- Alouette, PARL, AUVs, and array systems all significant accomplishments
- Changing conditions in the Arctic and in DRDC are leaving us with some doubt as to what will follow our current work
 - More basic Arctic personnel capabilities, but reduced Arctic skills
- A lack of an Arctic Research program is in my opinion an issue
 - It makes retention of skills difficult
 - Lack of continuity in application of successes to the next project

And sometimes it goes wrong!

